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1 Introduction

AFMM (Automated Frequency Matching Method) is a program package for CHARMM
[1] force field parametrization. The method includes fitting the molecular mechanics po-
tential to both vibrational frequencies and eigenvector projections derived from quantum
chemical calculations and is benchmarked on a series of already parametrized molecules
[2].
The program is written in Python and is provided as one Python source file (afmm.py).
Through a simple configuration file, the program is directed to import and then match
normal modes from a quantum mechanical (QM) program output file and a CHARMM
output file. The program optimizes the missing CHARMM parameters by iteratively
changing them in a random fashion in order to get the best fit with the reference set
(QM data). By implementing a Monte Carlo-like algorithm, the tedious task of manual
parametrization is replaced by an efficient automated procedure.
The method is best suited for optimization of small rigid molecules with a well-defined
energy minimum, for which the harmonic approximation to the energy surface is appro-
priate to describe their intra-molecular degrees of freedom. It is also of particular use in
deriving parameters for molecules for which experimental data are scarce.
Final testing of a parameter set should be performed against experimental or theoretical
data that are as far as possible independent of the data used in the optimization phase.
For example, molecular dynamics of the crystal structure (if present) using the set of
optimized parameters.

2 Theoretical Background

Molecular Dynamics (MD) aims to reproduce the time-dependent motional behavior,
structures and energies of molecular systems by integrating Newton’s equations of motion.
The potential energy of the system is described as a function of the atomic positions. This
function or “force field” describes how the energy changes when the system moves from one
conformation to another for example when bonds are rotated or atoms are displaced. The
functional form of the force field generally includes a set of empirical parameters which
are system dependent and must be tuned prior to performing simulations on a new system
or molecule. This tuning step is generally referred to as parametrization of the force field.
The reliability of a molecular mechanics calculation is dependent on both the functional
form of the force field and on the numerical values of the parameters implemented in
the force field itself. Thus, the first necessary step for reliable MD simulations is the
parametrization procedure.

AFMM is mainly intended for optimization of the force constants of the CHARMM
force field although optimization of all other CHARMM parameters is, in principle, pos-
sible. In CHARMM the empirical potential energy function is given by Eq.1:
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where Kb, Kub, Kθ, Kχ, Kφ are, respectively, the bond, Urey-Bradley, angle, dihedral
and improper dihedral constants. b, s, θ, χ, and φ represent, respectively, bond length,
Urey-Bradley 1-3 distance, bond angle, dihedral angle and improper torsion angle (the
subscript zero is used to represent the corresponding equilibrium value). Nonbonded in-
teractions between pairs of atoms (labeled i and j) at a relative distance rij are described
by the Lennard-Jones 6-12 (LJ) and Coulomb interaction terms. Rmin

ij and ǫij are, re-
spectively, the distance between atoms i and j at which the LJ potential is minimum and
the depth of the LJ potential well for the same pair of atoms. D is the effective dielectric
constant and qi the partial atomic charge on atom i.

General procedures for automated parametrization of molecular mechanics (MM) force
fields based on fitting to any given set of reference data involve the following main steps[3,
4]:

• Definition of a merit function based on the available reference data

• Choice of atom types to be used and definition of new atom types when needed

• Careful choice of initial parameter values

• Refinement of Parameters (optimization of the merit function)

• Testing and validation of the final parameter set

2.1 Computational Methods

The determination of the actual values of the various force constants in Eq.1 is a demand-
ing job. One major difficulty in the development of molecular force fields is that these
parameters cannot be directly determined from experiments. Nonetheless, they are more
directly related to quantities that are well defined quantum mechanically. Experimental
data pertaining to force field calculations, such as normal modes, infrared frequencies or
crystal lattice constants cannot be expressed as simple functions of the force field param-
eters. Furthermore, often availability of sufficient experimental data for parametrization
is rather scarce.

On the other hand, the second derivatives of the energy with respect to coordinates (i.e.
the Hessian matrix elements) are much more directly connected to the force constants of
the force field. The point charges of the system can also be readily computed. These
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quantities are therefore available through ab initio calculations, which in this context are
invaluable.

AFMM provides an efficient automated way to generate intra-molecular force field
parameters using normal modes. The method can be, in principle, used with any atom-
based molecular mechanics program which has the facility of calculating normal modes
and the corresponding eigenvectors.

The basic principle behind the AFMM method is that it is iteratively tuning an initial
MM parameter set in order to reproduce the normal modes generated from a QM program.
The reference quantum mechanical normal modes can be calculated with various QM
programs (e.g. Gaussian 94/98[5, 6], NWChem[7], ADF[8]) and using various levels of
theory (e.g. Hartree-Fock, DFT). The choice of reference data upon which to base the
new parametrization is a critical step in the parametrization procedure. The reliability
and accuracy of the new parameters in reproducing various properties of the molecule
depend on the quality of the reference data.

Equilibrium values for bonds b0, angles, θ0 and dihedrals χ0 can be derived from the
quantum chemical ground state structure or from experimental X-ray or NMR structures.
A set of partial atomic charges can be computed from these packages using various meth-
ods as well. Use of AFMM for optimizing van der Waals parameters is not reccomended.
The van der Waals constants ǫij and Rmin

ij depend mostly on atomic properties and are
relatively insensitive to changes in the molecular environment. Therefore, they can be
copied from existing CHARMM values and should not be modified during refinement.

2.2 Description of the Method

Automated refinement methods are mostly based on optimizing a “merit function”, which
usually corresponds to minimizing a weighted sum of square deviations from a set of ref-
erence values. Refinement of parameter sets always involves exploring a high dimensional
space in search of an optimal set. As for any multidimensional search method, in param-
eter optimization there is always a substantial risk that the search will get stuck in a high
local minimum. Initializing the procedure from a good initial guess can help reducing this
risk.

2.2.1 Choice of atom types and definition of new atom types

A major requirement in MM force fields is the portability of the parameter set, that is, the
possibility to transfer large groups of parameters from one molecule to another. In this
respect, addition of new atom types to the force field when designing the new parameter
set should be limited only to specific cases in which existing types cannot be used.

2.2.2 Choice of initial parameter values

The initial guess has to be based on analogy to other existing CHARMM parameters
and on chemical intuition. Equilibrium values and hybridization of the atoms involved
should be carefully taken into account when designing a set of initial parameters. The
second term in Eq.1 is the Urey-Bradley term which is not present in most force fields
and within the CHARMM model its use is limited to a few cases. The initial parameter
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set is then used for energy minimization and calculation of normal modes (frequencies
and eigenvectors) with CHARMM.

These can then be directly compared with the results of the “reference” normal modes
calculated by means of a quantum chemical program. Parameters are thus refined itera-
tively to fit the results of the quantum chemical normal mode calculation.

Another way to ensure the good choice of the initial parameter set involves checking
it by visual inspection of the motions involved in exchanged eigenvector modes, using the
Molden program[9] for example, and manually adjusting the parameters concerned. This
approach is particularly useful for critical torsion parameters. In some cases it is necessary
to derive initial parameters from rotational potential energy profiles (single point energy
calculations from QM programs) before achieving good optimization.

2.2.3 The Merit Function

One of the major problems of parametrization methods that fit to vibrational frequencies
is identifying a calculated mode with the corresponding reference mode. It is possible to
obtain good matching of the frequencies for a molecule while exchanging the corresponding
eigenvectors. The resulting model would then reproduce well the vibrational frequencies
(and the energy) of the reference molecule. However, it may not reproduce the distribution
of energy among the inter-molecular modes, and thus the dynamical properties of the
molecule. It is therefore important to use a merit function that takes into account both
the frequencies and all the corresponding eigenvectors to avoid this problem.

The fitting method proposed here minimizes the above frequency exchange effect. In
the “ideal” case of a perfect molecular mechanics model, the vibrational properties of the
molecule, as calculated by molecular mechanics, should perfectly match those resulting
from the quantum ab initio calculation. For this to occur not only must the frequencies
coincide but also the two sets of eigenvectors (resulting from the two different calculations)
should coincide. Each eigenvector from the set calculated by molecular mechanics would
therefore be orthonormal to all but one (it s corresponding eigenvector) of the vectors
from the reference set (calculated using quantum chemical methods).

An efficient way to check simultaneously for both orthonormality and frequency match-
ing is to project each of the CHARMM eigenvectors

{

χC
i

}

(where the subscript i indi-
cates the normal mode number and the superscript C indicates that the modes are cal-

culated with CHARMM) onto the reference set of eigenvectors
{

χ
Q
i

}

(the superscript
Q indicates that these modes are calculated with a QM program, to find the frequency

νmax
j corresponding to the highest projection (j : χC

i ·χ
Q
i =max) and to plot this frequency

against the corresponding frequency, νi. In the ideal case mentioned above, this plot

would give a one-to-one relationship: νi = νmax
j and χC

i · χ
Q
i = δij where δij is the Kroe-

necker delta. Points that deviate from the ideal plot may indicate exchanged eigenvectors
or mismatched frequencies.

AFMM is based on minimizing the weighted sum-of-squares, Y 2 of the deviations from
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the ideal situation as follows:

Y 2 =
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where N is the number of atoms in the molecule and there are 3N-6 independent
vibrational frequencies. In AFMM there are three possibilities to weigh the merit function:

1. The weights Ωi are chosen to be the inverse of the highest eigenvector projection.
This has the effect of biasing the merit function, even in the case of a good fre-
quency assignment, such that minimization of Y 2 leads to an improved eigenvector
projection distribution (Eq.3).

2. The weights Ωi are chosen to be the inverse of the MD frequency. This has the
effect of biasing the merit function towards better fitting of the lowest frequencies,
which are biologically more relevant (Eq.4).

3. No weights.

2.2.4 Parameter Refinement

For the automatic optimization of the chosen subset of parameters a standard Monte
Carlo (MC) scheme is used to minimize Y 2. Although the subset of parameters to be
optimized can be chosen at wish by the user, it is advisable to perform optimizations
separately on bond, angle, and torsion constants. At each step i, all chosen parameters
are iteratively varied in the MC algorithm with a uniform distribution within a fixed
range, Y 2

i is evaluated, and, if Y 2
i < Y 2

i−1, the new parameter set is used in the next step,
i+1. The optimisation algorithm is illustrated in Fig.1

When comparing results for different molecules, normalization of Y 2 can be rather
tedious due to the different weights Ωi. For comparison purposes, then, after minimization
of Y 2 the root-mean-square deviation, σ from the reference case is calculated:

σ =

√

∑

3N−6(νi − νmax
j )2

3N − 6
(5)
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Figure 1: Schematic representation of the optimization algorithm used in the AFMM method.
The method iteratively changes the parameters and matches both frequencies and eigenvector
projections from the molecular mechanics (CHARMM in this case) normal mode analysis (NMA)
with reference QM NMA.

3 Description of the Program

The current version of the program requires Python version 2 or newer and does not
require any non-standard Python modules. It contains definitions of two classes and the
normal modes import functions.
The param class contains information about the parameter to be optimized and a Monte
Carlo-like method to generate a new random value that is different from both the starting
and the current value.
The names of the normal modes import functions are composed of read followed by
the program name. For the QM output files, there are also functions that identify the
type of file, their name being composed of is followed by the program name. All the
normal modes import functions return lists of non-zero frequencies and corresponding
eigenvectors.
The afmm class is the core of the program and contains the following methods:

• ReadConfig - read the configuration file

• WriteNewParams - write new parameters in the CHARMM stream file

• WriteStreamedInput - write a new CHARMM input file
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• RunMD - run MD program, checking for normal termination

• DotProduct - calculates the dot product between the eigenvectors

• TooLow - checks if a value is too close to zero (before division)

• Compute - matches the modes and computes the merit function

• Optimize - main routine that assigns new values to parameters and minimizes the
merit function

• OutputResults - writes out the minimum weighted sigma, the corresponding non-
weighted sigma, the optimized parameters and the frequency matching file

The main program consists of only 3 calls: reading the configuration file, calling Optimize

for computation then calling OutputResults.

4 Needed files

AFMM needs the following files to start the parametrization:

4.1 CHARMM Input File

A CHARMM input file whose name has to have an extension “.inp” is required. The
CHARMM input file should be organized as follows:

• Read in the topology/parameter/structure files. When defining files you have to use
the absolute paths or run AFMM in the directory where these files are to be found.
In the parameter file you have to replace the parameter you want to optimize (force
constant) with a variable e.g. “@p1” for the first, “@p2” for the second and so on.

• Minimize the structure e.g. mini abnr nstep 50000 tolgrd 0.00001

• Run the normal modes calculation using the “vibran” module. You shouldn’t output
the mass-weighted eigevectors which is the default in CHARMM, so you have to use
the nomass option within the vibran module. You can find an example input file
within the distribution (opt.inp). The output CHARMM file will be automatically
created with extension .out (opt.out).

4.2 QM Output File

Currently 3 types of output files are supported for optimization in AFMM: NWChem 4.5
and older, Gaussian 94/98 and Molden format. In principle, any normal mode output
can be transformed in the Molden format which contains the frequencies, coordinates and
eigenvectors. A number of people have created scripts or programs that output Molden
format files starting from other programs output files.
See: http://www.cmbi.kun.nl/∼schaft/molden/others.html.

Important: In order for the parametrization algorithm to be able to compare the
same normal modes and eigenvectors two things should be taken care of:
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• Firstly, the order of the atoms in the coordinate set used in CHARMM and QM
programs respectively should be the same. We suggest that a minimization of
the molecule (using initial guesses for the parameters) should be run first with
CHARMM and the output coordinates to be given to the QM program for further
optimization and normal mode analysis.

• Second, the orientation of the two molecules should be the same when comparing the
normal modes. We suggest that when the QM calculation is finished, the optimized
coordinates should be converted in a CHARMM .pdb or .crd file and give it as input
to CHARMM before the parametrization starts.

5 Structure of the AFMM configuration file

The AFMM configuration file has to be called “afmm.cfg” and to be in the current direc-
tory. An example configuration file is distributed with the program.

The configuration file is composed of two sections. The first section is called [parameters]

and contains information on the parameters that you want to optimize. The general syn-
tax is:

parameter name = min value max value start value

The AFMM parameter names (parameter name) should correspond to the variable names
(e.g. p1) that you defined in the CHARMM parameter file. The first number is the min-
imum value that the parameter can take during the optimization. The second number
is the maximum value that the parameter can take during the optimization. The third
number is the starting value (the initial guess). The numbers can be specified as integers
or reals. The items can be separated by any number of whitespaces or tabs. In the fol-
lowing example:

[parameters]

p1 = 200.0 1000.0 500

the parameter p1 will be optimized in the range of 200.0-1000.0 with a starting value
of 500.0.

The second section is called [general] and contains settings that control the flow of
the program. The settings that are recognized by the current version are listed below;
the values given are just an example:

• maxsteps=10000

The maximum number of optimization steps for each parameter.

• maxsigmasteps = 2000

The maximum number of steps after which, if sigma remains constant, you want
the optimization to stop (Convergence Criterion).
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• mdexec = /usr/local/charmm/c28b1/cmf

Path of the CHARMM executable.

• mdinp = /home/cournia/propene/propene.inp

Path of the CHARMM input file you want to run.

• qmout = /home/cournia/propene/propene freq.out

Path of the output QM file that contains the frequencies and the eigenvectors.

• qmfactor = 0.89

Empirical scaling factor for the QM frequencies[10].

• afmmfile = freq.dat

AFMM frequency matching output file to be written at the end of the optimization.

• weighting = frequency

Choose between frequency, projection or none for the way you want your parametriza-
tion to be weighted (see section 2).

6 Running the program

The program can be run as follows:

python afmm.py

If any errors occur in the configuration file, they will be printed. Errors in the [parameters]
section lead to ignoring the parameter for which they occured. Errors in the [general]

section lead to the termination of the program.
While running, the program will print on standard output the values of weighted sigma
that result during the optimization. When the program exits after the convergence cri-
terion is fulfilled or maximum number of optimization steps is reached, the minimum
weighted sigma, the corresponding non-weighted sigma and the final parameter set is
printed on standard output and the frequency matching file is created. The frequency
matching file will contain 2 columns, the first containing the scaled QM frequencies (if a
scaling factor was given to the program) and the second containing corresponding MM
frequency values.
For comparison between different molecules or optimizations with different weights, the
non-weighted sigma should be used.
Based on previous benchmark studies on test molecules, a good optimization is reached
when the value of σ is within 0-100cm−1. This is normally achieved with a maxsteps value
of 100000 optimization cycles and a convergence criterion (maxsigmasteps) of 10000 cy-
cles for each parameter.
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6.1 Citing the Program

Please use the following citations when publishing results obtained with AFMM:

• A.C. Vaiana, A.Schulz, J. Wolfrum, M. Sauer and J.C. Smith, “Molecular Mechan-

ics Force Field Parameterization of the Fluorescent Probe Rhodamine 6G Using

Automated Frequency Matching”, J Comput Chem 24: 632-639, 2003

• A.C. Vaiana, Z. Cournia, I.B. Costescu and J.C. Smith, “AFMM: A Molecular

MEchanics Force Field Vibrational Parametrization Program”, Computer Physics
Communications, accepted for publication

For additional applications see:

• Z. Cournia, A.C. Vaiana, G.M. Ullmann and J.C. Smith, “Derivation of a Molecular

Mechanics Force Field for Cholesterol”, Pure and Applied Chemistry, 76(1):189-196,
2004
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